
Figure 1. Diagram of the MDS architecture emphasizing
the central role of explicitly represented state knowledge
and models, goal directed operation, and the separation
of state determination from control in all feedback loops.

Mission Planning and Execution Within the Mission Data System

Anthony Barrett, Russell Knight, Richard Morris, Robert Rasmussen

Jet Propulsion Laboratory
California Institute of Technology

4800 Oak Grove Drive, M/S 126-347
Pasadena, CA 91109-8099

{Anthony.Barrett, Russell.Knight, John.R.Morris, Robert.Rasmussen}@jpl.nasa.gov

Abstract. Not only has the number of launched spacecraft
per year exploded recently, but spacecraft are also getting
progressively more complex as instruments become more
capable and flyby missions give way to remote orbiters, then
to rovers and other in situ explorers. To address the software
issues in this expanding mission set, JPL started the Mission
Data System (MDS) project – an effort to make engineering
flight software more straightforward and less prone to error
through the explicit modeling of spacecraft state. This paper
presents how MDS performs mission planning and execution
in the context of managing explicit spacecraft state.

1 Introduction
As instruments become more complex and in situ missions
become more prevalent, the standard approach to control
spacecraft with predictable time-tagged command
sequences falls apart due to growing spacecraft sensitivity
to its dynamic partially-understood environment. For
instance, a Mars rover never knows exactly how much time
and energy it takes to traverse to a target. There is no way
to determine the intervening ground’s looseness prior to
actually driving over it. Currently such uncertainties
condense operations cycles and force operators to work
odd hours. For example, MER’s operations cycle forces
operators to digest the results of one command sequence
and generate the next one while a rover sleeps during the
Martian night – a 24.6-hour cycle.

One of the Mission Data System’s (MDS) underlying
objectives is to provide a less stressful approach toward
handling uncertainty. Instead of commanding a spacecraft
with predictable command sequences, MDS will control it
with goals that capture an operator’s intent and drive the
spacecraft to perform fault-tolerant behaviors that locally
adapt to environmental uncertainty. As hinted at in Figure
1, the MDS architecture addresses uncertainty by explicitly
representing system state with its certainty and modeling
how state knowledge evolves over time. Essentially state
estimation is kept separate from control in order to force
the explicit determination of state knowledge with its
certainty. By separating estimation and control, MDS both
facilitates logging state estimates for subsequent retrieval
and facilitates a principled approach toward control where
certainty assumptions are made explicit. These properties
are required when managing remote spacecraft. Logs

facilitate diagnosing unexpected problems, and certainty
knowledge is required to facilitate fault-tolerant control in
the face of partially understood environments.

Following this feedback-control-centered paradigm
for reasoning about a system, MDS’s Mission Planning &
Execution (MPE) subsystem manipulates constraints on
state variables instead of command sequences. Where
other planning, scheduling, and execution architectures
focus on representing actions one way to plan/schedule
and another way for execution, the MPE only represents
constraints on state, and controllers subsequently enforce
these constraints. Not only does this approach remove
consistency issues that derive from two models of each
action, but it also enables a straightforward way to merge
activity by simply merging constraints.

This paper describes MDS’s MPE by first explaining
the state and constraint approach to representing plans and
problems. With this representation, the subsequent four
sections describe the MPE component architecture and
how the components combine to implement a simple
approach to planning, scheduling, execution, and failure
response. Finally, the last three sections describe related
work, future work, and conclude.

2 Plan & Problem Representation
At its heart, MDS represents a spacecraft as an interacting
set of state variables (Dvorak, Rasmussen, and Starbird
2002). From a temperature to the data products in a file
system, each variable denotes an aspect of the spacecraft,
its environment, or its supporting ground system that has
some measurable impact on mission objectives. The
interactions within this set of variables is described in a
state effects model. For instance, Figure 2 illustrates three
such variables that impact whether or not data gets
transmitted to ground, where arrows represent the fact that
one variable affects another. In this case a transmitter is
either off or sending data, the temperature is measured in
degrees Celsius, and the heater can be either on, off, stuck
on, or stuck off. Since the transmitter only works when
warm, the temperature variable affects it. Similarly, an
active heater is needed to control the temperature.

Given a set of state variables representing a spacecraft,
the MPE constrains variable values over time intervals to
control the spacecraft, where a temporally bound constraint
is called a goal. For instance, Figure 3 contains an ordered
pair of goals for controlling the temperature state variable
to warm to within a specified ten-degree range and then
stay in that range for ten minutes. As illustrated, goals are
connected in a goal network, where timepoints bound each
goal’s interval and temporal constraints control the
separation between timepoints. In this case, the first goal
can last from 100 up to 900 seconds, and the second must
last for ten minutes. In general, timepoints are only
ordered when explicitly constrained or when the ordering
affects the evolution of some state variable’s value.

While full goal networks can be manually generated,
in practice such manual methods are both laborious and
error prone due to the interactions between state variables.
For this reason a method for automatically elaborating
goals was introduced to generate a goal network from a
small set of user specified constraints. For instance, Figure
4 shows tactics for elaborating a constraint to transmit data
with supporting constraints to have the temperature within
a prerequisite range during transmission (a) and that the
heater is on (b&c). Thus, a constraint to transmit data for
ten minutes captures an operator’s intent, and elaboration
automatically fills in the supporting constraints.

As terminology used to describe elaboration implies,
elaboration is like precondition achievement planning.
Just as precondition achievement planning adds actions to
set up conditions for executing other actions to achieve a
target situation, elaboration adds goals to enable enforcing
other goals to ultimately enable enforcing a target goal.
The differences between the two approaches include the
fact that the desired goal and its supporting goals are often
enforced simultaneously. Also, this constraint-centered
approach facilitates merging different, but compatible,
goals that overlap on the same state variable – a feature
that related action-centered systems in Table 1 currently
have trouble supporting.

Finally, where other planning systems reason about
propositions and metric resources, MDS allows
mechanisms for creating arbitrary types of state variables.
For instance, one state variable would capture the
orientation of a rover using a quaternion, and another
might capture the state of a memory storage unit with a
set of file (name, size) tuples. This generality stems from
a focus on application programmer interfaces to
implement arbitrary classes of state variables (Knight,
Chien, and Rabideau 2001). As such, MDS replaces a
focus on textual domain representation languages with a
focus on C++ functions to reason about state variables
and merge their goals. MDS provides base classes for
goals and state variables, and a domain is implemented by
creating subclasses and instantiating objects for particular
types of state variables and goals.

3 MPE Component Architecture
The most common framework for developing agent
architectures within the Artificial Intelligence community
is based on beliefs, desires, and intentions (Rao&Georgeff
1995). Within this framework an agent computes beliefs
about the world’s state by interpreting observations,
combines these beliefs with desires that are furnished by

Figure 2. Three interacting state variables

Heater
Mode Temperature Transmitter

600,600 100,900

A B C
Transition Temp

10°-20° C
Maintain Temp

10°-20° C
Figure 3. Example goal network with goals on the
temperature state variable and min,max time separations
between timepoints (in seconds).

Figure 4. Elaboration tactics supporting a transmit data
constraint on a transmitter state variable

(a)

100,900

Transition Temp
10°-20° C

Maintain Temp
10°-20° C

Transmit Data

(b)

Heater On

Transition Temp
X°-Y° C

Heater On

Maintain Temp
X°-Y° C

(c)

 Copy executing task net to proposed network for modification
 While there are goals to elaborate do
 Choose a goal G@[S,E] to elaborate (heuristically ordered)
 Add goal to proposed network
 Exhaustively choose elaboration tactic M for G
 Apply M, which possibly generates new goals to elaborate
 – Backup (and remove goals) if application of M is illegal
 For each state variable SV (from a heuristic ordering) do
 For each new goal G@[S,E] on SV (heuristically ordered) do
 Exhaustively choose how to constrain G’s start timepoint S
 Exhaustively choose how to constrain G’s end timepoint E
 Merge G@[S,E] into SV’s timeline – Backup if merge illegal
 Propagate the expected behavior of SV given the new merges
 – Backup if the propagation is illegal
 Replace executing task net with proposed one if it scheduled

Figure 6. High-level elaboration and scheduling
algorithm description, where a “backup” regresses
computation to the last unexhausted choice

an operator in the form of goals, and computes a set of
intentions in the form of executable actions that result in
satisfying the goals. The main difference among agent
architectures revolves around how beliefs, desires, and
intentions are computed, represented, and managed.
Within the MDS architecture of Figure 1, beliefs are
computed in state determination components, where each
state variable has a single state determination component,
but a single state determination component can estimate
the state of multiple variables, and these estimates are
managed by the state knowledge components. On the
control side, passing constraints to a state variable’s single
associated controller – which can similarly service multiple
state variables – performs intentions. Finally, desires are
turned into intentions by the MPE components illustrated
in Figure 5.

As illustrated, a goal elaboration language (GEL)
interpreter builds a temporally constrained network of
commanded goals. This network is put in an initElaborate
message and passed to the GoalsCoordinator, which starts
elaborators for commanded goals. These elaborators both
insert goals into the network tree and start other elaborators
for supporting goals. Once the goals are fully elaborated,
the Scheduler component schedules them for execution,
which in turn is mediated by the NetworkTimeService and
XgoalsChecker. These two components collectively
determine when to pass a constraint to a controller through
its associated state variable. Finally, each goal’s elaborator
component persists through execution in order to facilitate
changing a goal’s elaboration, if execution problems arise.

4 Elaboration & Scheduling
Although a number of components are involved in
elaboration and scheduling, they combine to implement the
algorithm listed in Figure 6. At the top level this algorithm

consists of four steps: copy the task network, try to add
goals to the copy through elaboration, try to schedule the
added goals in the context of the current goals, and finally
replace the executing network with the newly changed
task network. While the first and last steps are
straightforward, the middle tasks elaborate and schedule
using a backtracking search that branches at exhaustive
choice steps. For instance, choosing how to elaborate a
goal may have to be revisited if a supporting goal either
could not be elaborated or could not be scheduled.
Essentially, the three backtracking tests determine if a
choice was infeasible and fixes bad choices by undoing a
bad choice with subsequent work and making a more
informed choice to continue the search.

In general, the MPE framework facilitates building
numerous different types of planners/schedulers due to its
focus on components. By replacing components, the
MPE system can include other constraint elaboration and
scheduling approaches with arbitrary amounts of analysis
over the NetworkTree to inform a search for a new task
network. While MDS currently takes the simplest, least
informed, approach toward elaboration and scheduling,
the approach is easily changed.

4.1 Elaboration
To get a better understanding of elaboration, consider
Figure 7 with its illustration of the initial inter-component
messages that occur when elaborating an operator’s
request to transmit data for ten minutes. The first
message passes the commanded transmit network to the
mother elaborator, which starts elaboration by sending a
ProposerRequest message to the network tree and waiting
for a response. At this point the MotherElaborator task
manages the operator request’s elaboration by creating an
elaborator for each requested goal and incrementally
sending messages that tell it to start. In the case of
Elaborator1, messages 5, 6, and 12 first add the
commanded goal to the proposed network and

Figure 5. MPE system’s component architecture

 \StateVariabl

XGoalsChecker

GoalsCoordinator

StateVariable X

Constraint
Execution

StateNotification

StateNotification

initElaborate

start/stop

start/stop

motherElaborate

addElaborator Xi

NetworkTimeService

Scheduler

ConstraintScheduling
ConstraintCreation

set alarm

alarm

schedule

NetworkTree

GEL

subsequently command the elaboration of supporting
goals. While not illustrated due to space reasons, each
elaborator collects “OK” messages from its children and
subsequently signals “OK” to its parent, just like the
illustrated “OK” messages of elaborator2 and elaborator3.

Ultimately the mother elaborator informs the goals
coordinator of success or failure depending on whether or
not all of the mother elaborator’s child elaborators signal
“OK”. The goals coordinator either requests to promote
or cancel the local copy, respectively. Even after sending a
promote request, elaborators persist to handle subsequent
problems that occur when trying to schedule/validate the
proposed network and execute a validated network.

While the elaborator for each type of goal can be an
arbitrary C++ process, the underlying thread model makes
elaborators collectively execute the WHILE loop in Figure
6, where each elaborator implements the last three lines in
the loop. The goal choice line is defined by how
elaborator’s send messages to children and await
responses. Incrementally sending messages gives
elaborators full control, and batch sending gives a thread
scheduler full control. Finally, requiring that elaborators
relay messages through the GoalsCoordinator limits what
they can see and do.

4.2 Scheduling and Promotion
While elaboration was spread over multiple components,
all scheduling is performed by the scheduler component
shown in Figure 5, which schedules newly added goals
once elaboration completes. As the nested FOR loops in
Figure 6 suggest, scheduling focuses on one state variable
at a time and one goal at a time for a given state variable.
For instance, Figure 8 illustrates the scheduling of the
running example’s goals on the temperature state variable
timeline upon entering the inner FOR loop and after each
iteration, where a state variable timeline is an executable

string of goals (XGoals). In this case the initial timeline
contains an “unconstrained” XGoal that gets subsequently
cut up by merging in the new goals, and the resulting
timeline is checked for consistency using a propagation
test. This test validates a variable’s XGoal in the context
of its previous XGoal.

Figure 7. The first twelve out of twenty inter-component messages as components coordinate to elaborate a 600-second
transmit data request 6000 seconds after a reference time e, where dashed arrows denote messages relayed through the
GoalsCoordinator.

600,600

100,900

Elaborator2

GoalsCoordinator NetworkTree

Executing
Network

Proposed
Network

logical
copy

3. Proposer Status
4. Elaborate

6. Elaborate

5. add(Goal1@[B,C])

A B C
7. add(Goal2@[B,C])

Transmit Data

TransitionTemp
10°-20° C

MaintainTemp
10°-20° C

 Heater On

8. Elaborate

9. add(Goal3@[B,C])

Elaborator4

12. Elaborate

MotherElaborator

Elaborator1

10. OK

11. OK

2. Proposer Request

e
6000,6000

Elaborator3

1. Elaborate

 Heater On

(a)

Figure 8. Scheduling temperature state variable goals,
where (a) denotes the status prior to scheduling, (b)
denotes the status after merging in the first goal, and (c)
denotes the status during the propagation test.

 Unconstrained

 Unconstrained Transition Temp
10°-20°C

(b)
 Maintain

Temp
Transition Temp

10°-20°C

600,600 100,900

 Maintain
Temp

Transition Temp
10°-20°C

600,600 100,900

Propagation Test

 Maintain Temp
10°-20°C

 Transition Temp
10°-20°C

(c)

 Maintain
Temp

Transition Temp
10°-20°C

600,600 100,900

In the example, the propagation test passes, because
the transitioning from unconstrained to transition-temp to
maintain-temp is feasible. If elaboration did not add a
transition-temp goal, the unconstrained to maintain-temp
transition would fail and cause backtracking within the
scheduler and possibly back into elaboration. Finally,
trying to combine incompatible goals causes an illegal
merge backtrack. For instance, replacing the temperature’s
unconstrained XGoal with an XGoal to stay between 0°
and 50° Celsius still merges with the example goals, but a
0° to 5° range causes conflicts.

Since this elaboration and scheduling are computation
intensive, they performed on a copy of the executing task
network, which will replace the executing network once
scheduling successfully completes, or get discarded if it
could not complete. To keep the altered copy consistent
with the executing network, the scheduler cannot order any
new timepoint before a fired one even if it fired after
making the copy. This ensures that the current constraints
do not change when replacing the executing task network.

5 Plan Execution
As previously mentioned, plan execution in MDS involves
incrementally changing the constraints imposed on state
variables. The NetworkTimeService and XgoalsChecker
components from Figure 5 combine to facilitate evolving
the commanded constraints over time. More precisely,
these two components combine to provide a real-time
implementation of the algorithm shown in Figure 9 where
firing a timepoint grounds its time to now, passes its
subsequent XGoals to state variable controllers, and alters
goal failure monitoring. The two components respectively
handle temporal constraints and state constraints. In the
case of the NetworkTimeService, the NetworkTree sets
alarms to signal when unfired timepoints are not
constrained into the future and when they are about to time
out. The XgoalsChecker manages a set of timepoints that
are temporally allowed to fire by progressively testing their
subsequent XGoals to see when they are ready to start.

As the algorithm shows, execution mediates the
evolution of enforced state variable constraints by firing
timepoints. At any given moment a set of zero or more
timepoints can fire. Each of these timepoints fires when
either its XGoals can be enforced or its temporal
constraints force it to fire – possibly leading to a failure
condition. When a timepoint fires, its subsequent XGoals

are enforced and the monitored goals change. These goal
monitors detect failures for elaborators to respond to.
Since goal monitor functions are hand crafted for each
goal, the actual failure response is locally determined.

5.1 Constrained Timepoint Firing
To improve understanding of the execution algorithm and
its component implementation, consider Figure 10 with
the result of planning the transmit data example. In this
case there is a timeline for each of the three state
variables, and they collectively refer to five timepoints:
the first and last pre-existed to refer to a temporal
reference and the horizon respectively; B and C were
added as part of the original request; and A arose during
elaboration. Given the temporal constraints, the windows
relative to the reference time appear at the bottom.

To simplify the algorithm trace, we first ignore the
ramifications of goal monitoring, which we return to in
the next subsection. The main focus here is to show how
to efficiently perform timepoint firing by using interrupts
to let the algorithm sleep when no timepoints need to be
monitored. The NetworkTimeService provides alarms to
facilitate sleeping when all unfired timepoints are
constrained into the future. Also, the XgoalsChecker
component is event-driven by state notifications. In this
way the timepoint firing algorithm sleeps while waiting
for a new timepoint or notification.

For instance, the NetworkTree starts executing the
task network by setting up an alarm for 5100, when the
first timepoint becomes applicable. Until then, reasoning
about timepoint firing ceases and the state variables
remain unconstrained. At 5100, an alarm triggers the
NetworkTree to pass the two XGoals related to timpoint
A to the XgoalsChecker. Since one XGoal is a transition

 For each unfired timepoint TP not constrained into the future do
 If TP's XGoals can start or TP is about to time out then (fire)
 Stop monitoring each goal G@[*,TP]
 For each XGoal XG@[TP,*] do
 Change imposed constraint on XG's state variable to XG
 Start monitoring each goal G@[TP,*]

Figure 9. Timepoint firing algorithm for executing task
networks

Figure 10. Executable goal network in support of
transmitting data for 10 minutes, starting 100 minutes
after a reference “epoch” time e

[5100,5900] 6000 6600

e

Transition Temp
10°- 20° C

Maintain Temp
10°- 20° C

Heater On Heater On

Transmit Data Unconstrained

600,600

100,900

6000,6000

Transition Temp
10°- 20° C

Maintain Temp
10°- 20° C

Heater On Heater On

Transmit Data

Heater Mode:

Transmitter:

A B C

Temperature:

and the other is a heater mode requirement, they are both
immediately ready to start. Thus, A fires, and the
NetworkTree (1) passes the transition and mode XGoals to
the temperature and heater mode state variable respectively
for relay to their controllers and estimators and (2) alerts
the GoalsCoordinator to start monitoring the two goals
starting at A. In addition to enforcing/monitoring new
constraints, firing A uncovered B, which results in setting a
second alarm for 6000. Now reasoning about timepoints
ceases since none are pending while the transmitter warms.

When the alarm at 6000 goes off, the NetworkTree
triggers and detects a timeout. A timeout immediately fires
B, and the NetworkTree then passes the XGoals to the state
variables, changes the goal monitors, and sets an alarm for
timepoint C at 6600. At this point the state variables are
constrained to continually transmit data while reasoning
about timepoints ceases again. Finally, at 6600 the alarm
triggers the NetworkTree to fire timepoint C, which ends
the transmission by unconstraining the three state variables
and stopping the monitors. While “unconstrained”
intuitively lets a state variable be anything, the controllers
and estimators are always active, even when a state
variable is unconstrained. Thus, a controller will perform a
prudent behavior. In the case of the transmitter variable,
the prudent behavior is to keep it off.

5.2 Forced Timepoint Firing and Failure Response
The previous section explicitly avoided discussion about
responses when goal monitoring detects a failure. In
general, an XGoal is a merge of zero or more constituent
goals that appear in the network. Whenever an XGoal’s
constraint is passed down, the GoalsCoordinator either
starts or continues monitoring that XGoal’s constituents
against state variable value notifications to both detect and
respond to failure. Also, a constituent goal G@[S,E]’s
monitoring stops when ending timepoint E fires, which
also stops the last XGoal affected by G.

For instance, at 5100 in the previous trace timepoint A
fired to both pass two XGoals to the heater-mode and
temperature variables and start the GoalsCoordinator’s
passing state notifications to monitor functions in the two
starting goals. The monitor in the transition goal detects
situations where the temperature will not transition to the
target range by some deadline. In general, monitors can
perform any user-supplied response, but the default iterates
down from the third of the following six responses:

1. Reschedule to delay the goal and its supporting goals;
2. Reschedule to delay the goal that the failed goal

supports, progressively moving farther up;
3. Re-elaborate the failed goal and reschedule;
4. Re-elaborate the goal that the failed goal supports and

reschedule, progressively moving farther up;
5. Remove the set of operator-requested constraints that

resulted in creating the failed goal; and
6. Remove all operator requests and enter a safe state.

While the last response corresponds to the typical
approach to put a spacecraft into a safe mode, iterating
through the first five facilitate less drastic responses that
correspond to how the original elaboration/scheduling
algorithm in Figure 6 regressed its computation upon
detecting a problem with selections in the exhaustive
choice steps. The first two responses corresponded to
regressing in the scheduling loop, the second two
corresponded to regressing through the elaboration loop,
and the fifth choice corresponded to the algorithm’s
response when it was unable to elaborate and schedule a
commanded set of constraints.

Returning to the transmit example, suppose that the
heater spontaneously switched off at 5400. Thus, the
“heater on” goal’s monitor function would detect a
failure. In this case, the “heater on” cannot reschedule,
but the start of its parent “transition temp” goal can be
delayed to after 5400 – subsequently delaying the start of
the “heater on” goal. Thus, a reschedule to move
timepoint A after 5400 results in a legal task network that
tries to turn the heater on again.

While a failure at 5400 can be resolved with a
reschedule, such is not the case for a failure at 5910 due
to the temporal constraint between timepoints A and B.
More precisely, repair efforts first fail to reschedule the
“heater on” goal due to its simultaneity constraint with the
“transition temperature” parent, second fail to reschedule
the “transition temperature” goal due to figure 4(a)’s
temporal constraint, and third fail to reschedule the
“transmit data” goal due to the commanded constraint that
it occur 6000 seconds after epoch. Also, attempts to
progressively re-elaborate the “heater on” goal, the
“transition temperature” goal, and the “transmit data” goal
fail due to each goal having only one elaboration tactic.
Thus, the only resolutions are either to completely remove
the operator’s “transmit data” request or to safe the rover.

To provide an example of re-elaboration, suppose
that Figure 11’s elaboration was also available for an
emergency transmission, lacking goals on temperature,
but only transmitting at a low bandwidth. With this extra
elaboration, the transmit data request can be re-
elaborated, and the resulting task network appears in
Figure 12, where the data is transmitted at a lower data
rate in an emergency.

Figure 11. Elaboration tactic to support transmitting data
during emergencies when temperature controls fail

Low Bandwidth
Transmit

Transmit Data

Of course these mechanisms depend on both the

ability to elaborate/schedule during execution and to
maintain elaboration information on each distinct operator
requested set of constraints. Thus, the elaborator tasks
introduced in subsection 4.1 persist even after elaborating
and scheduling goals in order to facilitate re-elaboration
upon detecting a failure.

Finally, in addition to responding to problems after a
goal starts, constituent goal monitoring also deals with
cases where a goal was not ready to start when its initial
timepoint fires. This happens when the timepoint is
temporally constrained. For instance, timepoint B fires at
6000, even if the temperature is only 5° C, and the
constituent MaintainTemp 10°-20° C goal’s monitor
function both detects and resolves problem.

6 Observed MPE Activity
While the components back in Figure 5 do combine to
implement the elaboration and execution algorithms in
Figures 6 and 9, they do so in a manner that facilitates
letting the algorithms run in parallel – letting execution
continue during elaboration. To facilitate this feature, each
component collects messages from other components in a
queue and services received messages when activated,
where MPE component activation occurs in a round robin
fashion on a single thread of execution that coexists with
other threads associated with lower level hard real-time
functions for state estimation and control.

A number of experiments were developed to test the
MPE components on both a Rocky7 rover simulation and
the rover itself, and the simplest just (1) waits five seconds,
(2) turns the rover 90°, (3) makes it drive forward 3 meters,
and finally (4) parks it. Thus, the simplest test has three
main goals and five timepoints that elaborate to constrain
54 interacting state variables that model Rocky7. While

the ultimate behavior contains four visible activities, the
test exercises the full system – including the MPE.

To observe MPE’s behavior in this simple test, we
measured the amount of wall clock time spent in each
component to service its message queue during a round
robin iteration, and graphed the results in Figure 13,
where actual time is a multiple of the number of cycles
with a processor dependent ratio. For instance, this test
was preformed in simulation on a Pentium based Linux
workstation that performs 3.06E+09 cycles per second.
Thus, the longest amount of time spent in any component
was less than a third of a second during the test.

Figure 13 illustrates the first 40 rounds through the
MPE components. These rounds trace MPE activity
through elaboration, scheduling, and execution up through
the start of the turn activity.

Figure 12. Executable goal network in support of
transmitting data for 10 minutes, starting 100 minutes
after a reference “epoch” time e

6000 6600

 Transmit Data
Low Bandwidth

 Unconstrained
Transmitter:

e

600,600

6000,6000

Low Bandwidth
Transmit

Transmit Data

B C

 Unconstrained

 Unconstrained
Heater Mode:

Temperature:

Figure 13. Component activity pattern of the MPE during
elaboration, scheduling, and execution

GELInterpreter

1.E+03

1.E+06

1.E+09

C
yc

le
s

GoalsCoordinator

1.E+03

1.E+06

1.E+09

C
yc

le
s

Elaborators

1.E+03

1.E+06

1.E+09
C

yc
le

s

Scheduler

1.E+03

1.E+06

1.E+09

C
yc

le
s

NetworkTree

1.E+03

1.E+06

1.E+09

C
yc

le
s

NetworkTimeService

1.E+03

1.E+06

1.E+09

C
yc

le
s

XGoalsChecker

1.E+03

1.E+06

1.E+09

1 11 21 31
Round

C
yc

le
s

• In the first four rounds the GEL interpreter processes
command files to pass to the GoalsCoordinator.

• The GoalsCoordinator becomes active at round 4 as it
starts elaborators and mediates messages between
elaborators and the NetworkTree until round eight.

• The scheduler activates in round eight in order to
promote the copied network for execution.

• At round nine the NetworkTree’s activity spikes as it
promotes the newly scheduled network.

• The NetworkTimeService and XGoalsChecker spike
at round ten in order to fire a timepoint that starts a
five second wait period, where subsequent rounds
have all components servicing empty message queues.

• The GoalsCoordinator, NetworkTree, XGoalsChecker,
and NetworkTimeService activate and interact during
rounds 35, 36, and 37 in order to orchestrate the
second timepoint’s firing, where subsequent rounds
have the rover turning 90°.

• Finally, subsequent rounds have the GoalsCoordinator
servicing state update messages to monitor the turn
goal’s progress.

In order to simplify explanation, this example only
showed the MPE performing one task at a time, but
parallelism is possible. The message queues facilitate
parallelism by collecting messages from multiple sources
and servicing them when a component becomes active.
For instance, the GoalsCoordinator can mediate messages
during elaboration while monitoring executing goals
against state update messages.

7 Related Work
As the BDI framework suggests, most agent architectures
consist of three levels: a planner level to turn desired goals
into intended activities; an executive level to perform
intended activities and collect sensory information into a
believed system state; and a hardware driver layer to
interface to a robot’s actual sensors and effectors. While
the hardware drivers always function in hard real time, the
point where agent architectures differ revolves around
layer and interface implementations and resultant real-time
guarantees (see Table 1). Systems like CIRCA (Musliner,
Durfee, and Shin 1993) and EVAR (Schoppers 1995)
provided real-time guarantees across the board, but only
applied to relatively inflexible applications for simple
tasks. These systems compiled the planner into a control
system that always provided the next action to achieve
restricted objectives from the currently perceived state.
While EVAR used a handcrafted controller for a robot with
a single objective to rescue an astronaut, CIRCA had an
offline planner to generate a controller from a given
objective. On the other hand, the Remote Agent
(Muscettola et al. 1998) had an onboard planner to control
a flexible spacecraft during a short experiment in
autonomy, and the ASE (Chien et al. 2003) similarly used

an onboard planner to control a satellite to autonomously
collect science observations. CLARAty (Volpe et al.
2001) provides a rover specific control environment for
integrating of autonomy research algorithms. MDS
provides a unified flight/ground control architecture for
complex spacecraft with an application to the Mars
Science Lab (MSL) mission, which involves a rover.

Layer R-T
Guarantee First

Year System
Plan Exec

Application

1993 CIRCA Hard Hard PUMA robot
arm

1995 EVAR Hard Hard EVA astronaut
retrieval Sim.

1998 RAX None Soft DS-1 probe
(experiment)

2001 CLARAty Soft Soft Research rovers
Rocky7 & 8

2003 ASE Soft Hard EO-1 satellite
(experiment)

2004 MDS Soft Hard MSL’s unified
flight/ground sys

Table 1. Comparing the per layer real-time performance
guarantees of planner and executive layers within
different autonomous agent architectures (when each was
initially defined).

While MDS has similar performance guarantees to a
number of other systems. There are a number of points
where the MDS architecture is unique. First, the focus on
explicitly constraining explicitly known state information
derives from a need to keep flight software measurable
and forces the dissection of the executive layer into goal
monitors, state estimators, and state controllers. Second,
the focus on reasoning about state constraints instead of
actions facilitates a clean way to merge simultaneous
activity by merging multiple goals into a single XGoal.
One criticism of MDS’s constraint focus might involve
representing complex behaviors that would span multiple
state variables, like a behavior that would involve camera
and wheel variables while driving across Mars with
hazard avoidance. The MDS planning layer can
orchestrate such complex behaviors involving multiple
state variables by linking multiple state variable
controllers in what is called a delegation pattern where a
controller accepts constraints directly from others, but that
is beyond the scope of this paper.

8 Future Work
While the MDS architecture currently drives a rover
around the JPL Marsyard with the infrastructure
mentioned above, a number of improvements are planned
to facilitate scaling the MPE up to control the MSL rover
when it arrives on Mars in 2010. These improvements
include adding capabilities, improving performance, and
improving the human-computer interface. On the

 For each state variable SV (from a heuristic ordering) do
 For each new XGoal XG@[S,E] affecting SV do
 Exhaustively choose how to constrain XG’s start timepoint S
 Exhaustively choose how to constrain XG’s end timepoint E
 Split XGoals on SV if S and/or E are new to SV’s timeline
 For each new goal G@[S,E] on SV (heuristically ordered) do
 Exhaustively choose how to constrain G’s start timepoint S
 Exhaustively choose how to constrain G’s end timepoint E
 Merge G@[S,E] into SV’s timeline – Backup if merge illegal
 Propagate the expected behavior of SV given the new merges
 – Backup if the propagation is illegal
 Replace executing task net with proposed one if it scheduled

Figure 16. Extending the scheduling algorithm
description to include side effect reasoning

performance side, memory and CPU measurements on the
Rocky rovers are beginning in parallel with analysis of
how the actual domain will grow to manage the much more
capable MSL rover. On the capability side the most
pressing needs involve side-effect reasoning and the
responding to situations when the rover is oversubscribed.

8.1 Side-Effect Reasoning
Side-effect reasoning involves modeling how a state
variable’s constraints affect other variables, which is
similar to checking side effects on action centered AI
planners. For instance, Figure 14 adds an extra state
variable to the running example to capture the fact that the
status of available power has an affect on satisfying
mission objectives. While the heater’s mode affects the
current temperature, it also affects available power since an
active heater consumes power to raise the temperature.
Similarly, a transmitter consumes power in order to send
data. Since elaboration starts with a request on the
transmitter and only involves state variables that affect the
transmitter, effects on the power margin are side effects to
the transmission request.

Dealing with side effects starts with extending the
propagation function over XGoals on a state variable’s
timeline from just using the previous XGoal to also using
concurrent XGoals on state variables affecting the current
state variable. For instance, Figure 15 illustrates that the
propagation test on the power margin state variable
includes references to the transmitter and heater mode state
variables. In this case, the heater requires 10 Watts and the
transmitting data requires 25 Watts.

In addition to extending the propagation test,
scheduling has to change in order to reflect that the
combined side-effects of XGoals depend on the order of
their timepoints. Just as before, timepoints that appear on a
given state variable’s timeline are totally ordered, but now
both elaboration and side-effects reasoning can put a
timepoint on a state variable’s timeline. For instance,
timepoints A, B, and C appear on Figure 15’s power
margin timeline because of side effects reasoning. Due to
this requirement the scheduling loop in Figure 6 has to be
extended into the loop that appears in Figure 16, and the
heuristic ordering in which state variables are visited must
conform to the partial order defined by the arrows in the
state effects model. In the case of Figure 14 there is only
one such ordering that starts with the heater mode and ends
with the power margin. This ordering is required to avoid

propagating over a particular state variable before
determining the XGoals of state variables that affect it.

Finally, side-effects reasoning complicates failure
recovery due to problems determining the actual source of
a failure. For instance, suppose that the power margin
dipped to 2 Watts between timepoints B and C. The
minimum margin goal monitor detects this problem, but
there is no direct relationship between this goal and goals
that consume power. While other solutions are possible,
the easiest and safest resolution is to remove all operator
requests and enter a safe state.

8.2 Prioritized Requests
As hinted back in section 2, an operator’s request within
the MDS framework is a set of state constraints bound by

Figure 14. Four interacting state variables

Heater
Mode Temperature Transmitter

 Power
Margin

 Transmit Data

 Transition Temp
10°- 20° C

Maintain Temp
10°- 20° C

 Unconstrained
Transmitter:

Figure 15. Extending the example to reason about power
margin (a resource) during propagation in the scheduler.

[5100,5900] 6000 6600

 Heater On Heater On
Heater Mode:

e

600,600

100,900

6000,6000

Transition Temp
10°- 20° C

Maintain Temp
10°- 20° C

Heater On Heater On

Transmit Data

A B C

Temperature:

 30 Watts

5 Watts

Power Margin is at least 4 Watts

Power Margin:

 Delete “pending” operator requests with timed out timepoints
 For each “pending” operator request REQ in priority order do
 Try to elaborate/schedule REQ (see Figures 6 and 16)
 Mark REQ as not “pending” if it scheduled

Figure 17. Using the elaboration/scheduling algorithm to
maintain an overflow list of pending goal subnets

temporally constrained timepoints that gets elaborated and
then scheduled into the executing goal network.
Unfortunately, a flight project often runs into a situation
where its in situ explorer’s time and resource limitations
preclude satisfying all requests of it – a rover can only visit
so many rocks and transmit so much data a week. Thus,
requests are prioritized and elaborated/scheduled in priority
order. Currently, those requests that fail to schedule are
dropped by the MPE system, but that is soon to change.

Instead of dropping requests, the MPE will maintain a
list of “pending” unscheduled requests that it will try to
schedule upon discovering unexpected resources and time.
This change involves keeping requests that fail to schedule,
marking them as “pending”, and then activating Figure
17’s algorithm upon discovering extra time and resources.
Such a discovery happens when either another request fails
or a goal’s monitor function detects under-utilization. For
instance, the example power margin goal’s monitor
function might fire up the algorithm

In general, there are two ways for a request to become

pending: either fail to be initially elaborated and scheduled
or fail and be removed during execution. As Figure 17
suggests, there are also two ways for an operator request to
leave the pending list: either to timeout and be dropped or
to be successfully elaborated and scheduled. The timeout
option occurs whenever a request contains a timepoint that
will never schedule due to being temporally constrained to
fire in the past.

9 Conclusions
This paper discussed the autonomy architecture of the
Mission Data System with an emphasis on how the MPE
implements the planning layer. In MDS a spacecraft is
modeled as an interacting set of state variables, where each
variable is associated with a single estimator and controller
within an execution layer. An MPE plan is represented as
a consistent network of timepoints connected by temporal
and state constraints. While temporal consistency requires
the existence of a timepoint grounding that satisfies all
temporal constraints, state consistency holds when no such
temporal grounding results in simultaneous state variable
constraints that violate the model of how state variables
interact. Given such a plan, the MPE progressively
grounds timepoints to the current time in order to evolve
the active set of variable constraints. These evolving
constraints control the spacecraft to satisfy both science
observation and health maintenance objectives.

Acknowledgements
This work was performed at the Jet Propulsion
Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space
Administration. The authors would also like to thank
Steve Chien, Dan Dvorak, Erann Gat, Kim Gostelow, Bob
Keller, and Tom Starbird for significant contributions to
the MPE during its formative stages as well as discussions
with James Kurien, Mark Drummond, and Michael Freed.
Finally, discussions with Matthew Bennett were key to
documenting the approach to side effect reasoning, and
Lin Song provided the timing infrastructure that enables
measuring MPE component activity.

References
S. Chien, R. Sherwood, D. Tran, R. Castano, B. Cichy, A.
Davies, G. Rabideau, N. Tang, M. Burl, D. Mandl, S.
Frye, J. Hengemihle, J. Agostino, R. Bote, B. Trout, S.
Shulman, S. Ungar, J. Van Gaasbeck, D. Boyer, M.
Griffin, H. Burke, R. Greeley, T. Doggett, K. Williams,
V. Baker, J. Dohm. 2003. “Autonomous Science on the
EO-1 Mission,” In Proceedings of the International
Symposium on Artificial Intelligence, Robotics, and
Automation in Space (i-SAIRAS 2003). Nara, Japan.

D. Dvorak, R. Rasmussen, and T. Starbird. 2002. “State
Knowledge Representation in the Mission Data System.”
In Proceedings of the 2002 IEEE Aerospace Conference,
Big Sky, MT.

R. Knight, S. Chien, G. Rabideau. 2001. “Extending the
Representational Power of Model-based Systems using
Generalized Timelines,” In Proceedings of the 6th
International Symposium of Artificial Intelligence,
Robotics, and Automation in Space (i-SAIRAS 2001),
Montreal, Canada.

N. Muscettola, P. Nayak, B. Pell, B. Williams. 1998.
“Remote Agent: To Boldly Go Where No AI System Has
Gone Before,” Artificial Intelligence. 103(1-2):5-47.

D. Musliner, E. Durfee, K. Shin. 1993. “CIRCA: A
Cooperative Intelligent Real-time Control Architecture,”
IEEE Transactions on Systems, Man and Cybernetics,
23(6):1561-1574.

A. Rao, M. Georgeff. 1995. “BDI Agents: From Theory
to Practice,” In Proceedings of ICMAS-95.

M. Schoppers. 1995. “The Use of Dynamics in an
Intelligent Controller for a Space Faring Rescue Robot,”
Artificial Intelligence 73:175-230.

R. Volpe, I. Nesnas, T. Estlin, D. Mutz, R. Petras, H. Das.
2001. “The CLARAty Architecture for Robotic
Autonomy,” In Proceedings of the 2001 IEEE Aerospace
Conference, Big Sky, MT.

